Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Soc Cogn Affect Neurosci ; 18(1)2023 06 12.
Article in English | MEDLINE | ID: covidwho-20242536

ABSTRACT

The space surrounding the body [i.e. peripersonal space (PPS)] has a crucial impact on individuals' interactions with the environment. Research showed that the interaction within the PPS increases individuals' behavioral and neural responses. Furthermore, individuals' empathy is affected by the distance between them and the observed stimuli. This study investigated empathic responses to painfully stimulated or gently touched faces presented within the PPS depending on the presence vs absence of a transparent barrier erected to prevent the interaction. To this aim, participants had to determine whether faces were painfully stimulated or gently touched, while their electroencephalographic signals were recorded. Brain activity [i.e. event-related potentials (ERPs) and source activations] was separately compared for the two types of stimuli (i.e. gently touched vs painfully stimulated faces) across two barrier conditions: (i) no-barrier between participants and the screen (i.e. no-barrier) and (ii) a plexiglass barrier erected between participants and the screen (i.e. barrier). While the barrier did not affect performance behaviorally, it reduced cortical activation at both the ERP and source activation levels in brain areas that regulate the interpersonal interaction (i.e. primary, somatosensory, premotor cortices and inferior frontal gyrus). These findings suggest that the barrier, precluding the possibility of interacting, reduced the observer's empathy.


Subject(s)
Empathy , Personal Space , Humans , Evoked Potentials/physiology , Electroencephalography , Brain , Space Perception/physiology
2.
PLoS One ; 17(10): e0273346, 2022.
Article in English | MEDLINE | ID: covidwho-2054322

ABSTRACT

While the psychological predictors of antiscience beliefs have been extensively studied, neural underpinnings of the antiscience beliefs have received relatively little interest. The aim of the current study is to investigate whether attitudes towards the scientific issues are reflected in the N400 potential. Thirty-one individuals were asked to judge whether six different issues presented as primes (vaccines, medicines, nuclear energy, solar energy, genetically-modified organisms (GMO), natural farming) are well-described by ten positive and ten negative target words. EEG was recorded during the task. Furthermore, participants were asked to rate their own expertise in each of the six topics. Both positive and negative target words related to GMO elicited larger N400, than targets associated with vaccines and natural farming. The results of the current study show that N400 may be an indicator of the ambiguous attitude toward scientific issues.


Subject(s)
Evoked Potentials , Vaccines , Attitude , Climate Change , Electroencephalography , Female , Humans , Male , Plants, Genetically Modified , Semantics
3.
Neuropsychologia ; 174: 108334, 2022 09 09.
Article in English | MEDLINE | ID: covidwho-1937048

ABSTRACT

In the last two years, face-to-face interactions have drastically changed worldwide, because of the COVID-19 pandemic: the persistent use of masks has had the advantage of reducing viral transmission, but it has also had the cost of impacting on the perception and recognition of social information from faces, especially emotions. To assess the cerebral counterpart to this condition, we carried out an EEG experiment, extracting Event-Related Potentials (ERPs) evoked by emotional faces with and without surgical masks. Besides the expected impairment in emotion recognition in both accuracy and response times, also the classical face-related ERPs (N170 and P2) are altered by the presence of surgical masks. Importantly, the effect is stronger in individuals with a lower daily exposure to masks, suggesting that the brain must adapt to an extra constraint in decoding social input, due to masks hiding crucial facial information.


Subject(s)
COVID-19 , Facial Recognition , Electroencephalography , Emotions/physiology , Evoked Potentials/physiology , Facial Expression , Facial Recognition/physiology , Humans , Pandemics
4.
Sensors (Basel) ; 22(5)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1760809

ABSTRACT

The impact of repetitive magnetic stimulation (rTMS) on cortex varies with stimulation parameters, so it would be useful to develop a biomarker to rapidly judge effects on cortical activity, including regions other than motor cortex. This study evaluated rTMS-evoked EEG potentials (TEP) after 1 Hz of motor cortex stimulation. New features are controls for baseline amplitude and comparison to control groups of sham stimulation. We delivered 200 test pulses at 0.20 Hz before and after 1500 treatment pulses at 1 Hz. Sequences comprised AAA = active stimulation with the same coil for test-treat-test phases (n = 22); PPP = realistic placebo coil stimulation for all three phases (n = 10); and APA = active coil stimulation for tests and placebo coil stimulation for treatment (n = 15). Signal processing displayed the evoked EEG waveforms, and peaks were measured by software. ANCOVA was used to measure differences in TEP peak amplitudes in post-rTMS trials while controlling for pre-rTMS TEP peak amplitude. Post hoc analysis showed reduced P60 amplitude in the active (AAA) rTMS group versus the placebo (APA) group. The N100 peak showed a treatment effect compared to the placebo groups, but no pairwise post hoc differences. N40 showed a trend toward increase. Changes were seen in widespread EEG leads, mostly ipsilaterally. TMS-evoked EEG potentials showed reduction of the P60 peak and increase of the N100 peak, both possibly reflecting increased slow inhibition after 1 Hz of rTMS. TMS-EEG may be a useful biomarker to assay brain excitability at a seizure focus and elsewhere, but individual responses are highly variable, and the difficulty of distinguishing merged peaks complicates interpretation.


Subject(s)
Motor Cortex , Transcranial Magnetic Stimulation , Brain , Electroencephalography , Evoked Potentials/physiology , Motor Cortex/physiology
5.
Cortex ; 149: 173-187, 2022 04.
Article in English | MEDLINE | ID: covidwho-1739650

ABSTRACT

During the COVID-19 pandemic, we have been confronted with faces covered by surgical-like masks. This raises a question about how our brains process this kind of visual information. Thus, the aims of the current study were twofold: (1) to investigate the role of attention in the processing of different types of faces with masks, and (2) to test whether such partial information about faces is treated similarly to fully visible faces. Participants were tasked with the simple detection of self-, close-other's, and unknown faces with and without a mask; this task relies on attentional processes. Event-related potential (ERP) findings revealed a similar impact of surgical-like masks for all faces: the amplitudes of early (P100) and late (P300, LPP) attention-related components were higher for faces with masks than for fully visible faces. Amplitudes of N170 were similar for covered and fully visible faces, and sources of brain activity were located in the fusiform gyri in both cases. Linear Discriminant Analysis (LDA) revealed that irrespective of whether the algorithm was trained to discriminate three types of faces either with or without masks, it was able to effectively discriminate faces that were not presented in the training phase.


Subject(s)
COVID-19 , DiGeorge Syndrome , Attention , Evoked Potentials , Humans , Masks , Pandemics
6.
Sleep ; 44(10)2021 10 11.
Article in English | MEDLINE | ID: covidwho-1706791

ABSTRACT

STUDY OBJECTIVES: Insomnia is defined by the subjective complaint of poor sleep as well as daytime impairments. Since polysomnography (PSG) typically shows only modest sleep impairment, some still unidentified property of sleep, not mirrored in PSG, may be modified in insomnia.One possible mechanistic hypothesis is that insomnia patients may be more sensitive to inevitably occurring internal or external stimuli during the night, causing brief sleep disruptions then perceived as wake time. METHODS: Auditory event-related potentials (ERP) to low intensity (50 dB SPL) synthesized guitar tones played continuously throughout two nights of polysomnographically registered sleep were obtained in fifty patients with insomnia disorder (ID, without comorbidities) and 50 age- and sex-matched good sleeper controls (GSC) for each sleep stage and NREM/REM cycle. Phasic and tonic REM were treated as separate stages. Latencies and amplitudes of components P1, N1 and P2 were measured and analyzed by multivariate repeated-measures ANCOVA including effects of group, night, cycle, and age. RESULTS: ID showed reduced P2 amplitudes relative to GSC specifically in phasic REM sleep. The same reduction also correlated with the amount of sleep misperception across groups. Independent component analysis showed a frontal negativity to contribute most to this group difference. CONCLUSIONS: The present finding can be interpreted as increased mismatch negativity (MMN) in ID, reflecting automated detection of change in the auditory system and a concomitant orienting response. Specifically phasic REM sleep appears to be vulnerable to sensory afferences in ID patients, possibly contributing to the perception of being awake. CLINICAL TRIAL INFORMATION: Short name "PERSLEEP 2," URL https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008965, Registration DRKS00008965.


Subject(s)
Sleep Initiation and Maintenance Disorders , Evoked Potentials , Humans , Perception , Sleep , Sleep Stages
7.
Physiol Rep ; 9(18): e14992, 2021 09.
Article in English | MEDLINE | ID: covidwho-1431180

ABSTRACT

COVID-19 is a public health emergency with cases increasing globally. Its clinical manifestations range from asymptomatic and acute respiratory disease to multiple organ dysfunction syndromes and effects of COVID-19 in the long term. Interestingly, regardless of variant, all COVID-19 share impairment of the sense of smell and taste. We would like to report, as far as we know, the first comprehensive neurophysiological evaluation of the long-term effects of SARS-CoV-2 on the olfactory system with potential-related neurological damage. The case report concerns a military doctor, with a monitored health history, infected in April 2020 by the first wave of the epidemic expansion while on military duty in Codogno (Milan). In this subject, we find the electrophysiological signal in the periphery, while its correlate is absent in the olfactory bulb region than in whole brain recordings. In agreement with this result is the lack of metabolic signs of brain activation under olfactory stimulation. Consequently, quantitative and qualitative diagnoses of anosmia were made by means of olfactometric tests. We strongly suggest a comprehensive series of olfactometric tests from the first sign of COVID-19 and subsequent patient assessments. In conclusion, electrophysiological and metabolic tests of olfactory function have made it possible to study the long-term effects and the establishment of neurological consequences.


Subject(s)
Anosmia/physiopathology , Anosmia/virology , COVID-19/complications , Adult , COVID-19/physiopathology , Electrophysiology/methods , Evoked Potentials/physiology , Humans , Male , Olfactory Bulb/physiopathology , Olfactory Nerve/physiopathology , SARS-CoV-2 , Sensory Thresholds/physiology , Post-Acute COVID-19 Syndrome
8.
PLoS One ; 16(7): e0254045, 2021.
Article in English | MEDLINE | ID: covidwho-1295522

ABSTRACT

Intolerance of uncertainty (IU) can influence emotional predictions, constructed by the brain (generation stage) to prearrange action (implementation stage), and update internal models according to incoming stimuli (updating stage). However, neurocomputational mechanisms by which IU affects emotional predictions are unclear. This high-density EEG study investigated if IU predicted event-related potentials (ERPs) and brain sources activity developing along the stages of emotional predictions, as a function of contextual uncertainty. Thirty-six undergraduates underwent a S1-S2 paradigm, with emotional faces and pictures as S1s and S2s, respectively. Contextual uncertainty was manipulated across three blocks, each with 100%, 75%, or 50% S1-S2 emotional congruency. ERPs, brain sources and their relationship with IU scores were analyzed for each stage. IU did not affect prediction generation. During prediction implementation, higher IU predicted larger Contingent Negative Variation in the 75% block, and lower left anterior cingulate cortex and supplementary motor area activations. During prediction updating, as IU increased P2 to positive S2s decreased, along with P2 and Late Positive Potential in the 75% block, and right orbito-frontal cortex activity to emotional S2s. IU was therefore associated with altered uncertainty assessment and heightened attention deployment during implementation, and to uncertainty avoidance, reduced attention to safety cues and disrupted access to emotion regulation strategies during prediction updating.


Subject(s)
Brain/diagnostic imaging , Emotions/physiology , Fear/physiology , Frontal Lobe/diagnostic imaging , Adult , Behavior/physiology , Brain/pathology , Brain/physiology , Brain Mapping , Contingent Negative Variation/physiology , Electroencephalography , Evoked Potentials/physiology , Face/physiology , Fear/psychology , Female , Forecasting , Frontal Lobe/pathology , Frontal Lobe/physiology , Humans , Male , Uncertainty , Young Adult
9.
J Psychiatr Res ; 140: 124-131, 2021 08.
Article in English | MEDLINE | ID: covidwho-1253251

ABSTRACT

Rates of depression have increased during the novel coronavirus disease 2019 (COVID-19) pandemic, potentially due to associated stress exposure. However, it remains unclear which individuals are most susceptible. Electrocortical markers of reward processing, such as the reward positivity (RewP), are implicated in depression risk and may provide insights into who is most vulnerable to stress during the COVID-19 pandemic. The current study examined whether pre-pandemic neural correlates of reward reactivity (i.e., RewP) moderated the impact of social and financial stress on changes in youth and mother depression symptoms pre-to-post pandemic onset. Youth (n = 45) and mothers (n = 45) in the current sample were recruited prior to the COVID-19 pandemic as part of a larger study. RewP was assessed pre-pandemic, and depression symptoms were assessed pre- and post-pandemic onset for both youth and mothers. Additionally, social and financial chronic stress severity was assessed post-pandemic onset using a modified version of the UCLA Life Stress Interview. Financial stress was associated with prospective increases in depression for youth exhibiting blunted RewP at baseline. Similarly, family stress was associated with prospective increases in depression symptoms for mothers exhibiting blunted RewP at baseline. Findings suggest reduced reward responsiveness at the neural level may predispose both youth and mothers to future depression symptoms when exposed to higher levels of stress in the context of a pandemic.


Subject(s)
COVID-19 , Depression , Adolescent , Depression/epidemiology , Evoked Potentials , Female , Humans , Pandemics , Prospective Studies , Reward , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL